
Using leJOS communication for games

Timo Paukku Dinnesen (timo@daimi.au.dk)
University of Aarhus

Aabogade 34, 8200 Aarhus N, Denmark

June 3, 2005

1

Contents

1 Introduction 3

2 Game communication 3

3 The communication classes in leJOS 4

4 The Tower class 4

5 RCX IR hardware limitations 4

6 The test setup 4
6.1 RemoteControl . 7
6.2 RemoteControlModel . 7
6.3 CommandSender . 7
6.4 StatusReceiver . 7
6.5 CommunicationModule . 7
6.6 LLCTowerCommunicationModule . 7
6.7 LNPPortStream-CommunicationModule . 7
6.8 LNPAddressingPortStream-CommunicationModule . 7
6.9 SerialTower-CommunicationModule . 8

7 The second test setup 8

8 leJOS communication 8
8.1 RCXPort . 8

8.1.1 Description . 8
8.1.2 Usability in games . 8

8.2 RCXLNPPort . 8
8.2.1 Description . 8
8.2.2 Transmission speed . 8
8.2.3 Usability in games . 8

8.3 RCXLNPAddressingPort . 9
8.3.1 Description . 9
8.3.2 Transmission speed . 9
8.3.3 Usability in games . 9

8.4 LLC . 9
8.4.1 Description . 9
8.4.2 Transmission speed . 10
8.4.3 Usability in games . 10

8.5 Serial . 10
8.5.1 Description . 10
8.5.2 Transmission speed . 10
8.5.3 Usability in games . 10

8.6 RCXF7Port . 10
8.6.1 Description . 10
8.6.2 Usability in games . 11

9 Conlusion 11

2

1 Introduction

A popular choice for a software development
kit(SDK) for the LEGO Mindstorms RCX is
leJOS[leJOS]. The leJOS SDK supports writ-
ing programs in JAVA that can be run on a
virtual machine on the RCX. Since JAVA is a
high level language it enables the user to do
advanced things like communication without
knowing much about the technical aspects in
the actual transmission. The leJOS API spec-
ifies several different ways to do infrared(IR)
communication between the RCX and the IR
tower. This appendix describes some of these
and their properties with the focus being on
using leJOS for implementing robot games.

2 Game communication

Since the properties that define good commu-
nication are very different depending on which
game and which goals are intended we here
chose to look at games with the following prop-
erties.

1. The game will involve more than one ro-
bot.

2. The game will be played by human play-
ers. This means that one or several hu-
mans will control one or more robots. We
are not looking at robot only games where
the challenging part is coding the robot in
advance.

3. The player is in direct control with his ro-
bot. This means that if the player leaves
the controls his robot will not do much on
it’s own. The player will need to direct
it’s every move.

4. The game can also include robots that are
only controlled by programs. These pro-
grams may be run on the robots them-
selves or may be run on a PC that then

controls the robot by communicating with
the robot.

5. The player is not required to know a lot
about robotics or the game’s code or ways
of working. For example we can’t assume
that the player will know how to restart
or perform maintenance on the game if it
breaks down.

For a game like this to work the communication
part is likely to need the following properties:

• Communication in two directions.
Since the player will control his robot di-
rectly the communication will need to sup-
port some sort of commands given from
the player to the robot. The other direc-
tion is needed to report when the game is
over, perhaps if some loose condition has
been meet by the players robot.

• Fast communication of remote con-
trol messages. The player will not feel
“in control” if his robot responds to com-
mands in a very slow way. If the game
requires precision this property becomes
even more important.

• Stability. If the communication can
break down the player might not notice
this and wonder what he is doing wrong.
Also it is a know issue that errors in games
makes them less fun. For example it’s not
fun not to be able to play a game because
it simply won’t start or function correctly.

The following properties are not that impor-
tant:

• Guaranteed delivery of all packets.
In a game the “state”, as in “what is hap-
pening right now”, is changing constantly.
So if a packet is lost it might not matter
much because the information in it might
be obsolete anyway a very short time later.

3

• Addressing of packets. If information
is broadcasted to all robots they may all
be able to use the information for some-
thing useful. This will not be possible
if a lower layer in the protocol has al-
ready deleted the packet because it was
not specifically targeted for the robot. Ad-
dressing can always be implemented at
higher layers where it is needed if the com-
munication method delivers the data in
packets.

3 The communication classes
in leJOS

The communications methods in leJOS are
all, except the Serial class, part of the RCX-
COMM package. RCXCOMM started out as
a project done by the LEGO3 Team at DTU-
IAU[LEGO3]. It has since been improved by
different people to support the USB IR Tower
and several new protocols.

Unfortunately many of these improvements
are only for use between with a single RCX and
a single IR-Tower. This is probably because
the LEGO3 Team chose to use acknowledge
packets(ACK) to reply to messages to ensure
that data get though. While this is perfect for
the use in their project it does not work when
more than two communicating parties try send
each other messages.

Since the messages usually aren’t addressed
the sending of ACK replies leads to problems.
Since the tower may receive many ACK’s to
a single broadcast it can never be completely
sure about if the packets actually got through.
On the RCX side a lot of messages might have
been lost but ACK’s to the messages might
have been sent from other RCX’s, so the end
result is often that the RCX’s are still waiting
for more data, but the tower does not send any
because it thinks that all has been delivered
properly.

4 The Tower class

On the PC side the Tower class is the basis
of all communication. All the RCXCOMM
classes use the Tower class when they are run-
ning on the PC. And if one needs to commu-
nicate with the Serial class the Tower methods
sendPacket() and receivePacket() must be used
since the Serial class does not exist on the PC
side. The same for the LLC class. Here the low
level methods read() and write() can be used
to send raw bytes.

5 RCX IR hardware limita-
tions

The RCX IR messages are transmitted using a
2400 baud signal rate. Since the RCX does not
use quadrature amplitude modulation1 or other
data compression techniques the 2400 baud
equals a transmission speed of 2400 bits/sec.
This equals a theoretical2 limit of:

2400bits/sec.

8bits/byte
= 300bytes/sec.

6 The test setup

To test the practical use of the different com-
munication methods a remote control program
was created for the PC. The program was de-
signed with the intension that the remote con-
trolled robot should receive commands at a
steady state. These commands should hold a
complete state of what the robot is supposed to
do. For example a command could be “Go for-
ward and turn left”, and the robot should then

1A commonly used technique used to encode more
than one bit of information into each bit. For example
a 2400bps modem might transmit at 600 baud. For
a complete explanation see [Stallings, 00, p. 161] &
[WikiPediaQAM]

2Since the data transmission also uses some bits for
startbits, stopbits, et.c. the value is unrealistically high.

4

do both of these at the same time. When the
user does not do anything a command should
say “Do nothing” and the robot should stop all
motors.

Since some of the protocols do not guaran-
tee delivery of data, the commands need to be
sent more than once to increase chances that
some of them arrive. Lost data does not mat-
ter much if the program is repeatedly sending
commands since the robot might pick up a new
command (perhaps holding the same informa-
tion) a short time later. If the commands are
sent often the user probably never notices that
a command was lost.

A diagram of the testprogram can be seen in
figure 1 on the next page.

5

Figure 1: JAVA Class diagram of the test program.

6

The different classes can be described as:

6.1 RemoteControl

A simple main class that spawns a new Re-
moteControlModel. It also creates the com-
munication module specified in the arguments
passed via the commandline, but does not use
the communication module for anything, it
just passes it on to the RemoteControlModel.

6.2 RemoteControlModel

The model that contains the core of the remote
control. It holds a few variables and imple-
ments getters and setters for these.

• commandstate holds the command that
should currently be passed onto the robot.

• isTransmitting a flag that shows when
the IR port is being used. It is set from
the CommandSender and is only used by
the GUI for debugging purposes.

• packagesSendt A counter counting the
number of packets that have been sent.
Placed here so the GUI can access it. It
is used to check the transmission quality.
(A similar counter is placed in the robot
for recording how many packages are re-
ceived.)

• RCXStatus A number representing the
status of the RCX. In this simple test it
does not really have a purpose, but it is
set when status messages are sent from the
RCX to the PC.

6.3 CommandSender

A thread that runs at a specified interval to
send commands to the robot. If the interval is
set lower than the communcation module can
handle the CommandSender will try to send
as often as possible. CommandSender contains

two methods, pause() and unPause(), that can
be used to pause the sending of messages.

6.4 StatusReceiver

A thread that runs at a specified interval to
request status messages from the robot, and
handles reception of these. For some of the
low level communication modules the Status-
Receiver use the pause methods in Command-
Sender to stop sending of commands while lis-
tening for incoming status messages.

6.5 CommunicationModule

CommunicationModule is an abstract class
that specifies that a communication module
should contain methods for sending and receiv-
ing messages.

6.6 LLCTowerCommunicationModule

This communication module uses the Tower
class(Which is a part of RCXCOMM) to send
messages intended for reception by a RCX pro-
gram that uses LLC for IR communication.

6.7 LNPPortStream-
CommunicationModule

This module uses LNPPorts supplied by RCX-
COMM to do communication with a RCX that
also uses LNPPorts.

6.8 LNPAddressingPortStream-
CommunicationModule

This module uses LNPAddressingPorts sup-
plied by RCXCOMM to do communication
with a RCX that also uses LNPAddressing-
Ports. An LNPAddressingPort needs to have
a hostnumber and a portnumber set. For the
purpose of this test these numbers were hard
coded into the program.

7

6.9 SerialTower-
CommunicationModule

This module uses the Tower class to send mes-
sages intended for reception by a RCX program
that is using the Serial class. This is done by
wrapping the data into a packet with an op-
code for datatransfer.

7 The second test setup

Since the use of streams in some of the commu-
nication methods does not really need the two
classes CommandSender and StatusReceiver a
simpler version of the test program was writ-
ten. The results from these tests are added to
the results where they are appropriate.

8 leJOS communication

This section will describe the different leJOS
communication classes and for some of them
describe how good they will perform in robot
games with the properties mentioned above.

8.1 RCXPort

8.1.1 Description

The RCXport is the result from the LEGO3
Team’s work with RCXCOMM. It supports the
user with JAVA input and output streams and
thus enables easy communication. It ensures
that data get though by buffering the data if
the two communicating parties are not within
range. It does not support addressing.

8.1.2 Usability in games

Because the protocol ensures that data get
through is was not tested, as this way of com-
municating increases overhead in packets and
is not needed for game purposes. Also the
problem mentioned above with ACK’s happens
with the use of more than one RCX.

8.2 RCXLNPPort

8.2.1 Description

The RCXLNPPort also supports the user with
JAVA streams, but this version uses the Le-
gos Network protocol(TODO: find link). It’s
does not ensure that packets get through but
ensures that packets that get through are not
corrupted.

8.2.2 Transmission speed

Using the RCXLNPPort the remote control
program was able to send 5 one byte commands
per second to the car. This gives a response
time of 200msec. This is not very fast com-
pared to computer games, but might be fast
enough for a robot game. One good property of
RCXLNPPorts is that reception of bytes from
the RCX to the tower is not have a big ef-
fect on the rate at which commands can be
sent to the RCX. When using the second test
setup the transmission speed was increased to 8
one byte commands per second. Since RCXL-
NPPort uses packets with a length of 4 when
sending one byte (Header, length, data, check-
sum), this amounts to 32 bytes per second. Far
from the 300 theoretically possible. Of course
this way of using streams is not the right one,
but still the data rate seems a little low.

8.2.3 Usability in games

The use of streams makes it impossible to use
more than two communicating parties. If more
are used simple tests reveal that the bytes
from the streams get mixed. It would not
matter much if it was possible to ensure that
bytes always arrived in “packets”. The out-
put streams support the methods write(byte[]
b) and write(byte[] b, int off, int len) that in-
serts an array of bytes into the stream, and
one could assume that the data would be sent

8

as complete packets.3 This is clearly not the
idea behind streams, and simple tests also show
that the bytes get mixed up like using the nor-
mal write(byte b) method. The RCXLNPPort
would be fine if the “packet” used in the game
was only one byte large, but it seems almost
impossible to fit addressing or other advanced
information into a single byte.

8.3 RCXLNPAddressingPort

8.3.1 Description

The RCXLNPAddressingPort is basically an
RCXLNPPort that supports addressing. The
addresses consist of a 4 bit host name and a 4
bit port number. Unfortunately it is not pos-
sible to create more than one port per host.
This means that only two communicating par-
ties can talk to each other at a time. For ex-
ample a PC to receive data from two different
RCX’s the port would have to be opened and
closed all the time.

The reason for this unusual behavior can
be found in the LNPHandler. The construc-
tor in LNPHandler creates a new Tower ob-
ject. Since this can only be done once, and
since every RCXLNPAddressingPort need its
own LNPHandler, subsequent attempts to cre-
ate more RCXLNPAddressingPorts will fail.

With some small changes to LNPHan-
dler and RCXLNPAddressingPort it can be
brought to work as intended. This destroys
the fine layered structure in RCXCOMM and
again shows that most of the leJOS communi-
cation methods are written for only “one tower
and one RCX” uses. The changed version en-
ables the use of one PC communicating with
15 RCX’es. Probably enough for most robot
games.

3The documentation is not really clear on this.

8.3.2 Transmission speed

The RCXLNPAddressingPort runs at the same
speed as RCXLNPPorts with about 5 one byte
messages a second on the first test setup and
8 one byte messages on the second test setup.
Since a RCXLNPAddressingPort uses 6 bytes
to transmit one data byte, this amounts to 48
bytes per second. Communicating with more
than one RCX (using the modified version),
the communication slows down. With two
RCX’es only 1-2 messages were received per
second for each robot.

8.3.3 Usability in games

Since the addressing is not the most important
feature for game communication as mentioned
above the RCXLNPAddressing port may not
be the perfect choice. On the other hand
addressing solves the problem of mixed byte
streams, and RCXLNPAddressing might be
a good choice of a high level communication
method when transmission speed is not impor-
tant.

8.4 LLC

8.4.1 Description

The LLC class links uses native calls to some
interrupt driven code running directly on the
Hitachi micro controller[Caprani] that is lo-
cated in the RCX. The code provides a 64 byte
buffer4 to store incoming bytes from the IR
port. The methods provided in LLC are very
low level. Basically only two methods are used.
Read(), that reads a single byte from the in-
putbuffer, and sendBytes() that send a series
of bytes. All packet creation and decoding is
left to the programmer to create.

4Actually the buffer is the ROM output buffer that
is re-used for input buffering. Because of this the Serial
class can not be used at the same time as LLC.

9

8.4.2 Transmission speed

The transmission speed that can be achieved
using LLC directly will depend a lot on the
code written to send, receive and decode pack-
ets. Since LLC allows the programmer to cre-
ate packets just as he wishes he can create
packets that do not contain an equal number of
0’s and 1’s. This could double the transmission
speed compared to the other protocols. But
since the IR electronics use the number of 0’s
and 1’s to compensate for changes in ambient
light[Caprani], this might lead to lost packets.

The simple attempt used in this test did not
balance the signal and did also perform quite
badly. 75% of all packets was lost during trans-
mission.

8.4.3 Usability in games

With LLC it is possible to send whatever one
wants since the class is so closely connected to
the IR hardware. This enables some possibili-
ties but also requires more advanced program-
ming to make things work.

8.5 Serial

8.5.1 Description

The serial class uses the standard RCX ROM
calls (via leJOS’s ROM class) to do com-
munication. This means that no guaranteed
delivery of data, no collision detection and
also that the messages sent must use the op-
codes that the RCX was intended to work
with. To send data the user can use the
method sendPacket(byte[] aBuffer, int aOffset,
int aLen) and for receiving data the method
readPacket(byte[] aBuffer) is available. These
methods create the packet around the data so
the Serial class is not as low level as LLC. For
a packet to be received by Serial is must have a
correct opcode set. Otherwise the RCX ROM

routines will discard the packet before Serial
gets it.

8.5.2 Transmission speed

The serial class is very fast compared to the
earlier described classes. Using the above re-
mote control program it was able to send 12-
13 five byte commands per second5. Two way
communication is a bit of a problem when us-
ing serial since it does not include any form of
collision detection. The program has to know
when data is going in what direction. For ex-
ample it needs to stop sending when it knows
that it is soon supposed to receive. The mod-
ule written to send to the serial class uses a 17
byte long packet to send 5 data bytes including
the opcode. This amounts to 204 bytes being
sent per second. This places the serial class as
the best attempt to get close to the theoretical
maximum of 300bytes/sec.

8.5.3 Usability in games

The serial class sends data in packets which
works nicely for games of the type described
above. Addressing can easily be added by us-
ing a data byte as address, and still the multi
casting properties can be utilized at the same
time.

8.6 RCXF7Port

8.6.1 Description

The RCXF7Port is basically a RCXPort that
uses the Serial class. The Serial class uses the
LEGO firmware and thus only supports the
official opcodes. The opcode F7 is used for
data transfer in the official LEGO firmware
and RCXF7Port utilizes this to enable com-
munication with other programs that use the

5Actually the data part of packets were 6 bytes long,
but the first byte had to be the opcode 0x05 which is
one of the opcodes for data transfer.

10

LEGO firmware for communication. It pro-
vides streams but according to the documen-
tation does not do it very good. Bytes may get
lost and may be duplicated. It is also slower
than RCXPort and it’s use not recommended
unless one needs the compatibility with older
leJOS programs, NQC or other programs using
the LEGO firmware.

8.6.2 Usability in games

The RCXF7Port uses ACK packets like the
RCXPort and therefore does not support com-
munication between several RCX’s. Also when
the author of the class explicitly tells one not
to use it, RCXF7Port is probably the worst
choice for game use.

9 Conlusion

None of the communication methods provided
in leJOS are very good for games. The best
choice would probably be the Serial class, but
since it’s very low level the programmer will
need to invent a completely new protocol on
top of the standard opcodes and code every-
thing specific to the game he is going to create.

Another choice could be using LLC, but
since normal use of the class would involve
headers and balanced 0’s and 1’s the result
would be so close to the packets sent by the
Serial class that it seems like unnecessary ex-
tra work to do so.

None of these solutions are hiding many of
the technical aspects from the user, so the hope
of using a high level language for easy imple-
mentation of game communication should not
be reason for choosing leJOS.

11

References

[Caprani] Ole Caprani
RCX Manual
http://legolab.daimi.au.dk/DigitalControl.dir/RCX/Manual.dir/RCXManual.html

[LEGO3] http://www.iau.dtu.dk/ lego/lego3/rcxcomm/

[leJOS] http://lejos.sourceforge.net/

[RCX Internals] Kekoa Proudfoot
RCX Internals
http://graphics.stanford.edu/ kekoa/rcx/

[Stallings, 00] William Stallings
Data & Computer Communications, Prentice Hall, Inc., ISBN: 0-13-084370-9

[WikiPediaQAM] http://en.wikipedia.org/wiki/Quadrature amplitude modulation

12

